HIGH-PRESSURE GAS COOLING:

THE CASE FOR

HYDROGEN

Hydrogen’s cooling
power makes it an
attractive higher
performance alternative
to nitrogen as a
quenching gas,
particularly in light of the
escalating price of helium,
However, safely issues
must be resolved before
heat treaters will adopt it.

Robert Hill Jr.*

Solar Atmospheres of Western
Pennsylvania
Hermitage, Pa.

he indisputable and in-

creasing need for heat
treaters to save energy, boost
productivity, minimize dis-
tortion, and improve metal-
lurgical properties while
reducing environmental im-
pacts should encourage
vacuum furnace manufacturers to
place greater emphasis on enhancing
gas quenching performance. The
purpose of the study summarized in
this article was to analyze the cooling
performance of the various quench
gases that are available to vacuum
heat treaters.
The benchmark gas for quenching,
and the industry standard for many
years, has been nitrogen. Alternatives
for faster cooling include hydrogen
and helium. Theoretically, hydrogen
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than nitrogen, while hydrogen’s
speed edge over helium is predicted
tobe 17%.1

However, helium’s cost is skyrock-
eting and world reserves of the gas
are finite. This is why engineers at
Solar Atmospheres are focusing on
understanding the high-pressure
cooling properties of hydrogen.
Safety issues, of course, must be re-
solved, so they also are working on
this aspect of hydrogen gas
quenching, and are being guided by
the National Fire Protection Assn.’s
NFPA 86: Standard for Ovens and
Furnaces.

Study of Quenching Gases

The heat transfer rate of a gas is af-
fected by changes in gas pressure, ve-
locity, temperature, and composition,
and by the geometry of the part being
cooled. The Solar Atmospheres study
focused on gas composition. All other
conditions were held constant.

Procedure: The alloy used was
AISI/SAE 4140, an aircraft quality
Cr-Mo steel (UNS G41400). To inves-
tigate the cooling effects of the gases
nitrogen, helium, and hydrogen on
different cross sections, three sizes of
12 in. (305 mm) long round bar were
chosen: 1, 5, and 8 in. (25, 125, and
205 mm) in diameter. Ballast weights
were used to ensure constant loads
of 200 Ib (90 kg) for each run.

Work thermocouples were in-
serted into 0.25 in. (6 mm) in diam-
eter holes drilled parallel to the bars
and 6 in. (150 mm ) deep, at both the
center (radius core) and 0.25 in. (6
mm) from the outside diameter (sur-
face core). A5 in. (125 mm) in diam-
eter bar with thermocouples inserted
is shown in Fig. 1.

Loads were austenitized in a
vacuum furnace at 1700°F + 15°F
(925°C = 8°C) and held for 45 minutes
on the radius core work thermo-
couple. Gas quenching was at 10 bar
for the three media: nitrogen, helium,
and hydrogen. All test pieces were
then vacuum tempered at 325°F +
25°F (165°C = 14°C) for 1 hour. All
variable speed drives for the 100 hp
(75 kW) blower motor were set at
5000 rpm.

Temperatures were logged once a
second during cooling using a high-
speed digital recorder. Temperatures
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Fig. 2 — Furnace and work cooling data for the three test runs of the 5 in. (125 mm) in di-

ameter, 12 in. (305 mm) long AISI/SAE 4140 alloy steel bar.

Table 1— Cooling rate improvement over nitrogen

Quench

Improvement, %

Test bar gas Cooling rate | Cooling rate
diameter, | (all at10 bar | to 1200°F to 700°F
in. (mm) pressure) (650°C) (370°C)

Cooling rate
to 300°F
(150°C)

Average

1(25) He 44 50
H, 74 71

53
57

49
67

5(125) He 45 27
H, 51 41

29
43

34
45

8 (205) He 33 27
v H, 34 30

25
28

28
31

indicated by furnace (control) ther-
mocouples also were recorded.

Results Confirm Theory
Furnace and work cooling data for
the three test runs of the 5 in. (125
mm) in diameter steel bar are plotted
in Fig. 2. Temperature data points for
the test pieces were averages of the
values recorded by the “surface core”
and “radius core” thermocouples.
Graphs also were constructed for the
runs of the 1 and 8 in. (25 and 205
mm) in diameter steel test pieces.
Three temperatures were chosen
as critical temperatures to analyze:
1200, 700, and 300°F (650, 370, and
150°C). Cooling improvements for
helium and hydrogen versus ni-
trogen were then calculated for the
three different test pieces (Table 1).
Test data confirm that actual
cooling rates closely track those de-
rived from theory. Cooling data for
1and 5in. (25 and 125 mm) in diam-
eter bars exceed predictions, while
data for 8 in. (205 mm) bars are
slightly less than predicted (Fig. 3).
Also noted: The vacuum furnace
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Fig. 3— Summary of Solar Atmospheres’
quenching gas tests. According to theory, hy-
drogen should cool 50% faster than nitrogen
and 17% faster than helium. Cooling data for
Tand 5in. (25 and 125 mm) in diameter bars
exceed predictions, while data for 8 in. (205
mm) in diameter bars are slightly less than
the prediction. Note that part geometry is a
critical factor.

used for this study had thermocou-
ples positioned at both the entry and
exit sides of the heat exchanger. The
temperature data showed that heat
exchanger efficiency increases with
use of helium and hydrogen, gases
lighter than nitrogen.

Rockwell C-scale surface and core
hardnesses also were recorded for the
nine bars. Pieces quenched in helium
and hydrogen had higher hardnesses
than bars quenched in nitrogen.

Safety Is Being Addressed

Both hydrogen and helium are at-
tractive alternatives to the bench-
mark nitrogen — cooling rates are
improved, heat exchangers are more
efficient, and surface and core hard-
nesses are increased.

The major drawbacks to use of he-
lium are its high price and dimin-
ishing supply, neither of which is
likely to improve.

The properties of hydrogen, how-
ever, have proven to be superior to
helium at one-fifth the cost. But use
of hydrogen as a quench gas has tra-
ditionally been taboo for safety rea-

sons — it can become very unstable
should air enter the furnace. If
vacuum heat treaters are to make use
of hydrogen quenching, new and
more stringent safety precautions
must be developed and imple-
mented. To this end, Solar engineers
and others in the industry are dili-

gently exploring ways to .

safely quench with hydrogen.

For more information: Bob Hill is presi-
dent, Solar Atmospheres of Western
Pennsylvania, 30 Industrial Road, Her-
mitage, PA 16148; tel: 724 /982-0660; fax:
724/982-0593; e-mail: rah@solaratm.com;
Web: www.solaratm.com. This article is
based on “Hydrogen Vs. Helium: A Com-
parative Study in High Pressure Cooling
Rates,” a paper coauthored by Mr. Hill
and Trevor M. Jones, research engineer,
and presented at the ASM Heat Treating

Society Conference (Pittsburgh, Sep-
tember 26, 2005).
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